

Features:

- 850nm multimode oxide isolated VCSEL
- Operates up to 10.3125 Gbps •
- TO-46 tilt window TO-CAN prealigned into LC sleeve •
- Packaged with a monitor photodiode •
- Packaged with integrated heater for low-temperature • operation
- 6dB attenuated receptacle •

COTSWORKS 850nm 10G VCSEL TOSA is suited to a wide variety of multimode fiber applications.

MILITARY

AEROSPACE

COMMERCIAL AEROSPACE

MILITARY TACTICAL

SUBSEA NETWORKING

RADAR & SENSING

OIL & **EXPLORATION**

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	T _{sto}	-55	105	°C	
Case Operating Temperature	TOP	-55	100	°C	
Laser Reverse Voltage	VR	-	5	V	
Laser Forward Current	IF	-	15	mA	
Hand Lead Soldering Temperature	-	-	260	°C	(1)
ESD Exposure (Human Body Model)	-	-	225	V	(2)
Notes: 1) Hand solder for 10 seconds					

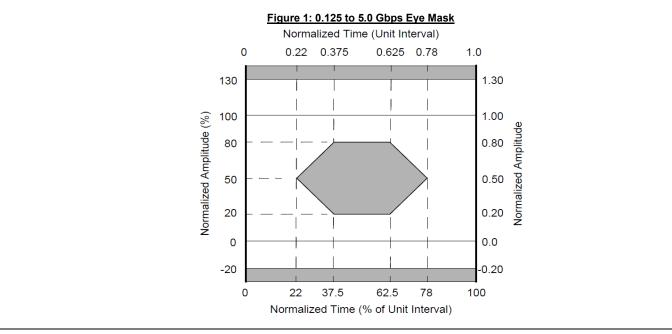
Hand solder for 10 seconds.

Proper ESD conditions should be employed while attaching to host board. 2)

Opto-Electronic Specifications

(For DR \leq 5.0 Gbps, unless otherwise noted, –55°C \leq T_c \leq 100°C. Use of heater is not permitted during operation.) (For 5.0 < DR \leq 10.3125 Gbps, unless otherwise noted, –20°C \leq T_c \leq 95°C. For –55°C \leq T_c < –20°C operation the heater should be driven so performance mimics 25°C specifications.)

Parameter	Test Condition	Symbol	Min.	Тур.	Max.	Unit	Notes
VCSEL						•	
Data Rate	-	DR	-	-	10.3125	Gbps	(9)
Optical Output Power	$I_F = 7.5 \text{mA}$ 50/125µm MMF 62.5/125µm MMF $T_C = 25^{\circ}\text{C}$	P _F	0.45	-	0.7	mW	
Coupling Efficiency	I _F = 7.5mA T _C = 25°C	PO_PCT	70	-	-	%	(2)
Threshold Current	T _c = 25°C	I _{TH}	-	0.75	1.5	mA	
Threshold Current Temperature Variation	-	ΔI_{TH}	-	-	1.2	mA	(3)
Slope Efficiency	T _C = 25°C	η	0.06	0.09	0.1	W/A	
Center Wavelength	-	$\lambda_{\rm C}$	830	850	860	nm	(1)
Center Wavelength Temperature Variation	-	$\Delta\lambda_{C}$ / ΔT	-	0.06	-	nm / °C	
RMS Spectral Width	-	Δλ	-	-	0.65	nm	(1)
Laser Forward Voltage	I _F = 7.5mA T _C = 25°C	VF	-	2.1	2.4	V	
Laser Reverse Voltage	I _R = 10μΑ	V _R	5	10	-	V	
Relative Intensity Noise	I _F = 7.5mA	RIN120MA	-	-	-128	dB / Hz	(4)
Series Resistance	-	R	45	70	85	Ω	(1)
Optical Return Loss	-	ORL	12	-	-	dB	
Encircled Flux Diameter	-	EF 4.5µm	-	-	30	%	(5)
		EF 19µm	86	-	-		
Bias Current Range	-	I _F	6	-	12	mA	
High Temperature Power Droop	-	PDROOP	-0.8	-	0	dB	(7)
Transmitter Dispersion Penalty	-	TDP	-	-	3.8	dB	(1)
Monitor Photodiode							
MPD Current	V _R = 3V	I _{PD}	135	-	215	μA	(1)
MPD Power Tracking	-	ΔΡ / ΔΤ	0.8	-	1.2	dB	
MPD Dark Current	$P_F = 0mW$ $V_R = 3V$	I _{DARK}	-	-	20	nA	
MPD Reverse Voltage	P _F = 0mW I _R = 10μA	BVR _{PD}	30	115	-	V	(6)
Monitor Capacitance	V _R = 0V Freq = 1MHz	C _{PD} -	-	75	100	pF	
	V _R = 3V Freq = 1Mhz	Cru	-	40	55	P.	
Heater					•	•	
Resistance	T _C = 25°C	R _{HEATER}	12	15	18	Ω	
Settling Time	T _c = -40°	T _{HEATER}	-	-	90	S	(8)
Heater Thermal Impedance	-	-	-	180	-	°C / W	
Heater Maximum Current	T _c = -40°		-	150	-	mA	
	T _c = 95°C	I _{H,max}	-	0	-		

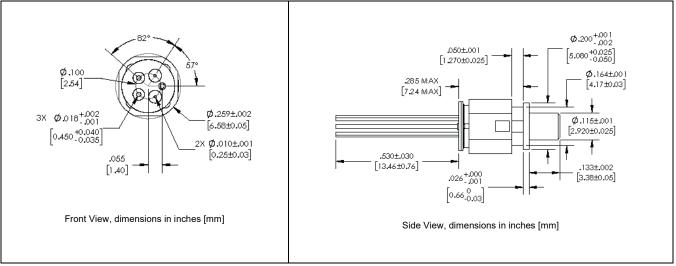


104-00056 Up to 10Gbps

850nm 5-Pin VCSEL With Heater

Notes:

- 1) Test condition is over all operating condition temperatures with tracked back monitor current found at 7.5 mA at 25C with a 12 mA clamp.
- PO_PCT is defined as the ratio of the coupled power into a 50/125µm fiber to the total power output from the optical front end as measured on a large area detector.
- Operation outside of the specified range may result in the threshold current exceeding the maximums defined in the electro-optical characteristics table. ΔITH is the maximum deviation from the 25°C value.
- 4) RIN12 is measured using the OMA technique with 12dB return.
- 5) Encircled flux is measured per TIA-455-203 at 7.5 mA average current.
- 6) To prevent VCSEL damage, short the VCSEL anode and cathode during BVR testing of the photodiode.
- 7) Droop is the fiber coupled power difference in dB from a tracked condition to the clamped condition.
- 8) Settling time is tracked by center wavelength stabilizing to within 5% of the final value.
- 9) For 0.125 to 5.0Gbps operation, the heater shall not be required to achieve compliance with the eye mask detailed in **Figure 1** when measured with a fourth order Bessel-Thomson filter having a 3dB bandwidth of 0.75 times the signaling rate.



Pin Identification

× - ~ 100 ×	PIN #	Description	Pin Diameter
Γ ^{Ø,100} [2.54]	1	VCSEL Anode	9 mil
	2	VCSEL Cathode	9 mil
PIN 4	3	Heater Terminal 2	18 mil
82* 82*	4	PD Cathode	18 mil
	5	PD Anode, Heater Terminal 1, CASE	18 mil
PIN 1 PIN 2 97* 57* 57*	Notes: 1) Me	chanical dimensions shown here are in u	nits of mm [inches].

Standard Mechanical Dimensions

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation

Ordering Information

Contact COTSWORKS Sales for information and pricing.

Contact COTSWORKS for mechanical dimensional information, lead times and configuration options.

COTSWORKS and the COTSWORKS logo are registered trademarks of COTSWORKS, INC. COTSWORKS reserves the right to change, alter, or revise this document without notice unless otherwise agreed to.

