Rugged SFF Fiber Optic Transceiver

Features:

- 1.25 Gbps to 4.25 Gbps duplex data links
- 1310nm Fabry-Perot laser transmitter and PIN receiver
- Class 1 Laser Int. Safety Std. IEC-60825 compliant
- Industry standard MSA 2x5 footprint
- MSA 2x7 option available providing Digital Diagnostics per SFF-8472
- Rugged LC connector housing
- -40 to 85°C operating temperature, -40 to 95°C option
- Option for RoHS compliant and lead free per Directive 2002/95/EC
- Single 3.3V power supply
- AC coupled transmitter and receiver data
- Conformal coated for harsh environment use
- Pigtail Assembly option is available

The SFF-4G-LX is ideal for harsh environment connectivity because of its low cost, availability, and wide operating parameters

AEROSPACE

AEROSPACE

TACTICAL

NETWORKING

SENSING

EXPLORATION

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes			
Maximum Supply Voltage	V _{CC}	-0.5	4.5	V				
Storage Temperature	T _{sto}	– 55	100	°C				
Case Operating Temperature	T _{OP}	-40	85	°C				
Relative Humidity	RH	0	85	%	Based on conformal coating			
Lead Soldering Temperature	-	-	260	°C	10 seconds on leads only			
Conformal Coating	-	0.8	1.2	mil	See ruggedization notes			

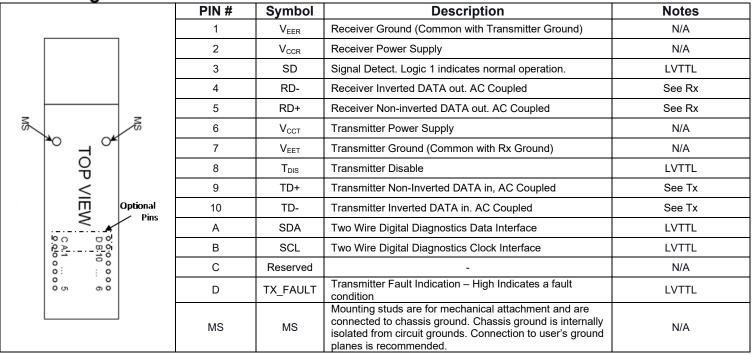
Notes:

- SFF transceivers may be water washed. The process must be followed by an 80°C bake for one hour to ensure the drying of any water inside 1) the shell
- The components should not undergo Reflow Soldering under any circumstances.

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate	BR	1.25	-	4.25	Gbps	
Supply Voltage	Vcc	3.14	-	3.47	V	
Power Dissipation	P _{DIS}	-	-	1.2	W	1.32W for T _{OP} > 85°C

Rugged SFF Fiber Optic Transceiver


Electrical Specifications (Top = -40 to 85°C, Vcc = 3.14 to 3.47 Volts)

Symbol	Min.	Тур.	Max.	Unit	Notes
P _{DISS}	-	-	1.2	W	1.32W for T _{OP} > 85°C
Icc	-	-	275	mA	
R _{in}	-	100	-	Ω	
V_{DTX}	200	-	2400	mV	(1)
V _D	2.0	-	V _{cc}	V	(2)
V _{EN}	0	-	0.8	V	
I _{cc}	-	-	80	mA	
R _{out}	-	100	-	Ω	
V_{DRX}	600	-	900	mV	
t _r	-	-	130	ps	(3)
t _f	-	-	130	ps	(3)
RX∆TJ	-	-	0.4	UI	(4)
SD _{norm}	2.0	-	V _{cc}	V	(2)
SD _{fault}	0	-	0.8	V	(2)
	PDISS ICC Rin VDTX V	P _{DISS} -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P _{DISS}	P _{DISS} - - 1.2 W

Notes:

- 1) LVPECL.
- 2) LVTTL.
- 3) 20% 80%.
- 4) Peak to Peak.

Pin Configuration

Rugged SFF Fiber Optic Transceiver

Optical Characteristics (Top = -40 to 85°C, Vcc = 3.14 to 3.47 Volts)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Average Output Optical Power (SMF)	Pout	-5	-	1	dBm	(1)
Optical Wavelength	λ	1270	1310	1355	nm	(2)
Spectral Width (RMS)	σ	-	-	2.5	nm	(2)
Extinction Ratio	ER	9	-		dB	(3)
Rise Time	t _r	-	-	150	ps	180ps for T _{OP} > 85°C (3)(4)(6)
Fall Time	t _f	-	-	150	ps	(3)(4)(6)
Relative Intensity Noise	RIN	-	-	-120	dB/Hz	(3) FCPI-4 (δ _R - γ _R)
Total Jitter Contribution	TX _{TJ}	-	-	0.4	UI	pk-pk
Receiver						
Receiver Sensitivity (1.25 Gbps)	RX _{SENS1G}	-	-	-22	dBm	(1)(4)(5)
Receiver Sensitivity (4.25 Gbps)	RXsens4g	-	-	-20	dBm	(1)(4)(5)
Receiver Overload	RX _{MAX}	0	-	-	dBm	(1)(4)(5)
Optical Center Wavelength	λc	1200	1310	1600	nm	
Return Loss	RL	12	-	-	dB	
Signal Detect Assert	SDA		-	-22	dBm	(1)(5)
Signal Detect De-Assert	SDD	-35	-	-	dBm	(1)(5)
Signal Detect Hysteresis	SD _H	1	-	-	dB	
N 4						

Notes:

- 1) Measured using a broad area detector optical power meter.
- 2) Measured using an optical spectrum analyzer at 25°C per IEEE 802.3 1000BASE-LX.
- 3) Measured using a high-speed oscilloscope.
- 4) Measured using a BERT set running PRBS 2⁷-1 at 4.25Gbps.
- 5) Measured using a 9µm single-mode variable optical attenuator.
- 6) 20% 80%.

Digital Diagnostics Information

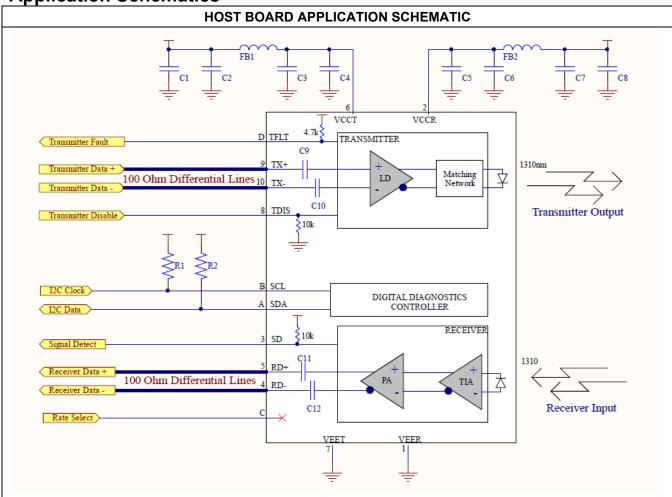
COTSWORKS' SFF parts include additional pins to read and write I2C information per the MSA SFF 8472 specification. While typically implemented in pluggable modules such as SFPs, all that is required to enable this functionality is two additional pins and internal circuitry in the transceiver. The circuitry in the COTSWORKS SFF is a microcontroller providing EEPROM storage and accessing optical and electrical information from the laser and receiver. https://cotsworks.com/support-documents/digital-diagnostic-overviews/

Address A0h Data Fields

A0h Address (dec)	# Bytes	# Bytes Name Description		Value (hex)						
	Base ID Fields									
00	1	1 Identifier Type of transceiver		02						
01	1	Ext. Identifier	Extended identifier of type of transceiver	04						
02	1	Connector	Code for connector type	07						
03				04						
04				12						
05		Transceiver Co	Code for electronic or optical compatibility	00						
06	8			02						
07	0			22						
08				00						
09				01						
10				05						
11	1	Encoding	Code for high speed serial encoding algorithm	01						
12	1	BR, Nominal	Nominal signaling rate, units of 100 MBd	2A						
13	1	Rate Identifier	Type of rate select functionality	00						

Rugged SFF Fiber Optic Transceiver

	1			
14	1	Length (SMF, km)	Link length supported for single mode fiber, units of km	0F
15	1	Length (SMF)	Link length supported for single mode fiber, units of 100 m	96
16	1	Length (50um)	Link length supported for 50 um OM2 fiber, units of 10 m	00
17	1	Length (62.5um)	Link length supported for 62.5 um OM1 fiber, units of 10 m	00
18	1	Length (OM4 or copper cable)	Link length supported for 50um OM4 fiber, units of 10m. Alternatively copper or direct attach cable, units of m	00
19	1	Length (OM3)	Link length supported for 50 um OM3 fiber, units of 10 m	00
20				43
21				4F
22				54
23				53
24				57
25				4F
26				52
27	16	Vendor Name	SFP vendor name (ASCII)	4B
28		vendor Name	SFP veridor fiame (ASCII)	53
29				20
30				20
31				20
32				20
33				20
34			Γ	20
35				20
36	1	Transceiver	Code for electronic or optical compatibility	00
37				00
38	3	Vendor OUI	SFP vendor IEEE company ID	00
39				00
40				53
41				46
42				46
43				34
44				47
45				4C
46				58
47	16	Vendor PN	Part number provided by SFP vendor (ASCII)	XX
48		V GIIUUI FIN		XX
49				XX
50				XX
51				XX
52				XX
53				XX
54				XX
55				XX
56				30
57	4	Vendor rev	Revision level for part number provided by	30
58	4	vendor rev	vendor (ASCII)	30
59				30
60	2	Mayalanath	Laser wayolongth	05
61		Wavelength	Laser wavelength	1E
	_			

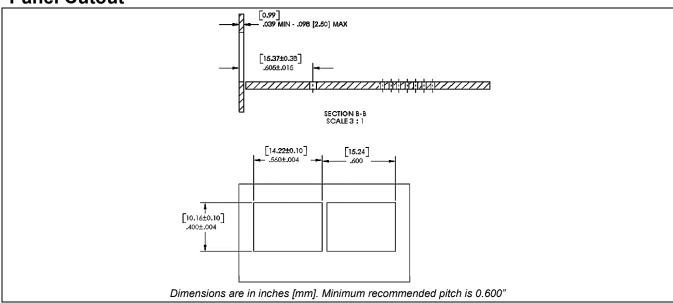


Rugged SFF Fiber Optic Transceiver

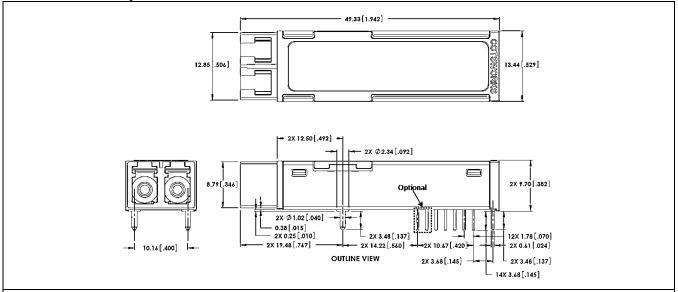
62	1	Unallocated		00
63	1	CC_BASE	Check code for Base ID Fields (addresses 0 to 62)	XX
		Extended ID F	ields	
64	2	Ontions	Indicates which optional transceiver signals	10
65	2	Options	are implemented	14
66	1	BR, max	Upper bit rate margin, units of %	00
67	1	BR, min	Lower bit rate margin, units of %	00
68				XX
69				XX
70				XX
71				XX
72				XX
73		Vendor SN		XX
74			Serial number provided by vendor (ASCII)	XX
75	10			XX
76	16			XX
77				XX
78				XX
79				XX
80				XX
81				XX
82				XX
83				XX
84			Vendor's manufacturing date code	XX
85				XX
86				XX
87	_			XX
88	8	Date code		XX
89				XX
90				20
91				20
<u> </u>			Indicates which type of diagnostic	
92	1	Diagnostic Monitoring Type	monitoring is implemented (if any) in the transceiver	68
93	1	Enhanced Options	Indicates which optional enhanced features are implemented (if any) in the transceiver	70
94	1	SFF-8472 Compliance	Indicates which revision of SFF-8472 the transceiver complies with	08
95	1	CC_EXT	Check code for the Extended ID Fields (addresses 64 to 94)	XX

Rugged SFF Fiber Optic Transceiver

Application Schematics



Notes:


- Recommend host routes separate supply voltages and filtering for SFF-module transmitter and receiver as shown in the schematic above:
 - o FB1/FB2 ferrite bead for power supply noise suppresion; Murata BLM18KG601SN1, 0603, 600Ω @ 100MHz, 1300mA.
 - o C1/C4/C5/C8 bulk capacitance; Murata GRM21BR61C106KE15L, 0805, 10μF, 16V.
- o C2/C3/C6/C7 de-coupling capacitors; Murata GRM155R71C104KA88D, 0402, 0.1μF, 16V.
- R1/R2 2-wire bus pull-up resistors required on host for implementing optional digital diagnostics; $4.7k\Omega$ to $10k\Omega$.
- Screw or solder posts are not internally connected to signal ground. Recommend screw or solder posts be connected to chassis ground if available, otherwise they should be tied to local signal ground.
- For host with LVPECL electrical interface contact COTSWORKS' applications engineering.

Rugged SFF Fiber Optic Transceiver

Panel Cutout

Mechanical Specifications

SFF-4G-LX mechanical dimensions are defined by the Small Form Factor (SFF) Transceiver Multi-Source Agreement (MSA). July 5, 2000. Mechanicals do not show optional EMI shield. Dimensions are in mm [inches].

Rugged SFF Fiber Optic Transceiver

Ruggedization Notes

- Parylene Type C coating can be used for conformal coating with a 1.0 mil ± 0.2 mil thickness through a deposition process.
- Parylene Type C has a 5600 VPM rating, withstands high temperatures, and is extremely resistant to oil, dirt, and object impact.
- Contact COTSWORKS for all MSDS and case composition information.

Reference Information

- 1) IEEE Standard 802.3, 2002 Edition, 1000BASE-LX. IEEE Standards Department, 2002.
- 2) "Fibre Channel Draft Physical Interface Specification (FC-PI-2 Rev. 10.0)". American National Standard for Information Systems.
- 3) InfiniBand 1.2.1 specification.
- 4) 3.125 Gb/s XAUI specification, IEEE 802.3ae, section 47.
- 5) ARINC 818 specification at 3.1875Gb/s, https://www.arinc818.com/
- 6) Directive 2002/95/EC of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." January 27, 2003.

Regulatory Compliance

- COTSWORKS transceivers are Class 1 Laser Products and are designed to comply with US FDA regulations.
- These products are designed to comply with Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950.
- This part has an option for compliance with Directive 2002/95/EC covering restriction on certain hazardous substances (RoHS). Contact COTSWORKS for more information.

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation

Ordering Information

SFF-4G-LX	-x	-DPLX-LC	- x	-x	-x	-x	-x
SFF Form Factor	Pins and Diagnostics		Ruggedized Coating	Operating Temp Range	EMI Shield	RoHS Level	Posts
4.25 Gbps MAX Data Rate	(): 2x5 No Diagnostics	Duplex LC Receptacles	(): Non-coated	A: -40 to 85°C	(): No Shield	(): Level 5	(): Posts
1310nm Long Reach	D: 2x7 Digital Diagnostics		R: Parylene	M: –40 to 95°C.	E: Shield	6: Level 6	NP: No Posts

Example part number: SFF-4G-LX-D-DPLX-LC-R-A

[Small Form Factor Transceiver, 4.25 Gbps Max Data Rate, 1310nm Long Reach, Digital Diagnostics, Duplex LC Receptacles, Parylene Coated, –40 to 85°C Operating Temperature Range, No EMI Shield, RoHS 5(6), Solder Posts]

Contact COTSWORKS for mechanical dimensional information, lead times, and other configuration options.

COTSWORKS and the COTSWORKS logo are registered trademarks of COTSWORKS, INC. COTSWORKS reserves the right to change, alter, or revise this document without notice unless otherwise agreed to.

