

Features:

- 850nm multimode oxide isolated VCSEL
- Operates from 125 Mbps to 10.3125 Gbps
- TO-46 tilt window metal can component prealigned into LC sleeve
- Packaged with a back monitor
- Attenuated window can

COTSWORKS 850nm 10G VCSEL TOSA is suited to a wide variety of multimode fiber applications.

COMMERCIAL MILITARY AEROSPACE AEROSPACE

MILITARY TACTICAL

SUBSEA . NETWORKING

RADAR & SENSING EX

OIL & EXPLORATION

Absolute Maximum Ratings

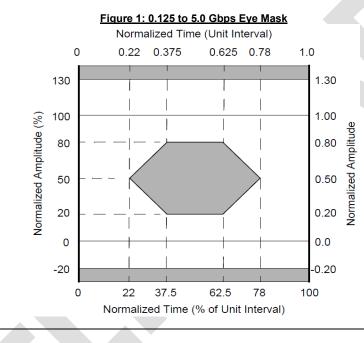
Parameter	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	T _{sto}	-55	105	°C	
Case Operating Temperature	Тор	-55	100	°C	
Laser Reverse Voltage	VR	-	5	V	
Laser Forward Current	lF	-	12	mA	
Hand Lead Soldering Temperature		-	260	°C	(1)
ESD Exposure (Human Body Model)	-	-	225	V	(2)
Notes:					

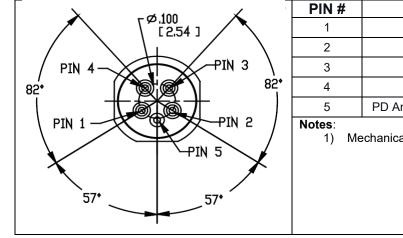
1) Hand solder for 10 seconds.

2) Proper ESD conditions should be employed while attaching to host board.

Opto-Electronic Specifications

(For $0.125 \le DR \le 5.0$ Gbps, unless otherwise noted, $-55^{\circ}C \le T_{c} \le 100^{\circ}C$. Use of heater is not permitted during operation.) (For $5.0 < DR \le 10.3125$ Gbps, unless otherwise noted, $-20^{\circ}C \le T_{c} \le 95^{\circ}C$. For $-55^{\circ}C \le T_{c} < -20^{\circ}C$ operation the heater should be driven so performance mimics 25°C specifications.)

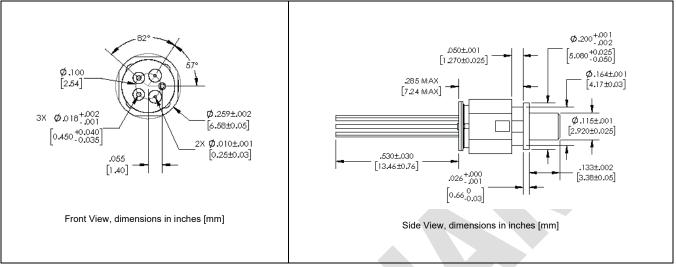

Parameter	Test Condition	Symbol	Min.	Тур.	Max.	Unit	Notes
VCSEL	1 						
Data Rate	-	DR	0.125	-	10.3125	Gbps	(9)
Optical Output Power	I _F = 7.5mA 50/125μm MMF 62.5/125μm MMF T _c = 25°C	P _F	-4.5	-	-1.5	dBm	
Coupling Efficiency	I _F = 7.5mA T _C = 25°C	PO_PCT	70	-	-	%	(2)
Threshold Current	$T_{\rm C} = 25^{\circ}{\rm C}$	I _{TH}	-	1	1.2	mA	
Threshold Current Temperature Variation	-	ΔI_{TH}	-	-	1.2	mA	(3)
Slope Efficiency Temperature Variation	I _F = 7.5mA	Δη / ΔΤ	-	-0.5	-	% / °C	
Center Wavelength	-	λ _c	830	850	860	nm	(1)
Center Wavelength Temperature Variation	-	$\Delta\lambda_{\rm C}$ / ΔT		0.06	-	nm / °C	
RMS Spectral Width	-	Δλ	-	-	0.65	nm	(1)
Laser Forward Voltage	I _F = 7.5mA T _C = 25°C	V _F	1.6	1.8	2.4	V	
Laser Reverse Voltage	I _R = 10μΑ	VR	5	10	-	V	
Relative Intensity Noise	I _F = 7.5mA	RIN120MA	-	-	-128	dB / Hz	(4)
Series Resistance	-	R	25	50	65	Ω	(1)
Series Resistance Temperature Variation	I _F = 7.5mA	ΔR / ΔT	-	-0.2	-	% / °C	
Optical Return Loss	-	ORL	12	-	-	dB	
Engineer of Flux Discussion		EF 4.5µm	-	-	30	0/	(5)
Encircled Flux Diameter	-	EF 19µm	86	-	-	%	(5)
Bias Current Range	-	IF	6	-	10.9	mA	
Open Bore Rollover Current	-	I _{MAX}	13	-	-	mA	
High Temperature Power Droop	-	PDROOP	-0.8	-	0	dB	(7)
Transmitter Dispersion Penalty	-	TDP	-	-	3.8	dB	(1)
Monitor Photodiode							•
MPD Current	$V_R = 3V$	I _{PD}	175	-	600	μA	(1)
MPD Power Tracking	-	ΔΡ / ΔΤ	0.8	-	1.2	dB	
MPD Dark Current	$P_F = 0mW$ $V_R = 3V$	I _{DARK}	-	-	20	nA	
MPD Reverse Voltage	P _F = 0mW I _R = 10μA	BVR _{PD}	30	115	-	V	(6)
Monitor Capacitance	$V_{R} = 0V$ Freq = 1MHz $V_{R} = 3V$ Freq = 1Mhz	C _{PD}	-	75 40	100 55	рF	
Heater	••••••••••••••••••••••••••••••••••••••	· ·					
Resistance	T _C = 25°C	R _{HEATER}	12	15	18	Ω	
Settling Time	$T_{\rm C} = -40^{\circ}$	T _{HEATER}	-	-	90	s	(8)
Heater Thermal Impedance	-	-	-	180	-	°C / W	. ,
· · ·	T _C = -40°		-	150	-	mA	
Heater Maximum Current	T _c = 95°C	I _{H,max}	_	0	-		



Notes:

- 1) Test condition is over all operating condition temperatures with tracked back monitor current found at 7.5 mA at 25C with a 10.9 mA clamp.
- PO_PCT is defined as the ratio of the coupled power into a 50/125µm fiber to the total power output from the optical front end as measured on a large area detector.
- Operation outside of the specified range may result in the threshold current exceeding the maximums defined in the electro-optical characteristics table. ΔITH is the maximum deviation from the 25°C value.
- 4) RIN12 is measured using the OMA technique with 12dB return.
- 5) Encircled flux is measured per TIA-455-203 at 7.5 mA average current.
- 6) To prevent VCSEL damage, short the VCSEL anode and cathode during BVR testing of the photodiode.
- 7) Droop is the fiber coupled power difference in dB from a tracked condition to the clamped condition.
- 8) Settling time is tracked by center wavelength stabilizing to within 5% of the final value.
- 9) For 0.125 to 5.0Gbps operation, the heater shall not be required to achieve compliance with the eye mask detailed in **Figure 1** when measured with a fourth order Bessel-Thomson filter having a 3dB bandwidth of 0.75 times the signaling rate.

Pin Identification



PIN #	Description	Pin Diameter		
1	VCSEL Anode	9 mil		
2	VCSEL Cathode	9 mil		
3	Heater Terminal 2	18 mil		
4	PD Cathode	18 mil		
5	PD Anode, Heater Terminal 1, CASE	18 mil		
Notes: 1) M	echanical dimensions shown here are in ι	inits of mm [inches].		

Standard Mechanical Dimensions

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation

Ordering Information

Contact COTSWORKS Sales for information and pricing.

Contact COTSWORKS for mechanical dimensional information, lead times and configuration options.

COTSWORKS and the COTSWORKS logo are registered trademarks of COTSWORKS, INC. COTSWORKS reserves the right to change, alter, or revise this document without notice unless otherwise agreed to.

