Features:

- 5 pin LC ROSA, with separate PD bias for RSSI
- High performance GaAs PIN photodiode with separate transimpedance amplifier
- Low electrical parasitic
- TO46 package
- Data rates from 155Mbps to 4.25Gbps
- A separate detector bias pin which can be used for receive power monitoring
- Low bias currents and voltages

COTSWORKS 4.25G SX ROSA is ideal for high speed fiber optic communications

General Description

The 105-00001 uses a high-performance GaAs PIN photo-detector packaged with a transimpedance amplifier designed to meet performance requirements for 4.25Gbps data communication over multimode optical fiber at 850nm. Applications include Ethernet, Fiber Channel, and ATM protocols. The optical assembly is designed to interface either 50µm or 62.5µm multimode fiber. The 105-00001 is designed to be paired with COTSWORKS P/N 104-00002 VCSEL TOSA product.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes	
Storage Temperature	T _{sto}	-40	85	°C		
Case Operating Temperature	T _{op}	-40	85	°C		
Lead Solder Temperature	T _{solder}		260	°C	(1)	
Power Supply Voltage	V _{cc}	-0.5	4.0	V		
Incident Optical Power	P _{max}		+6	dBm	+3 dBm average	
ESD Exposure (Human Body Model)	V_{ESD}		225	V	(2)	

Notes

- 1) Hand solder for 10 seconds
- 2) Proper ESD conditions should be employed while attaching to host board.

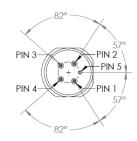
4.25Gbps SX ROSA

Opto-Electric Specifications (3.0V<Vcc<3.6V, AC coupled to 50Ω (100Ω differential), -40°C<T<85°C unless otherwise specified)

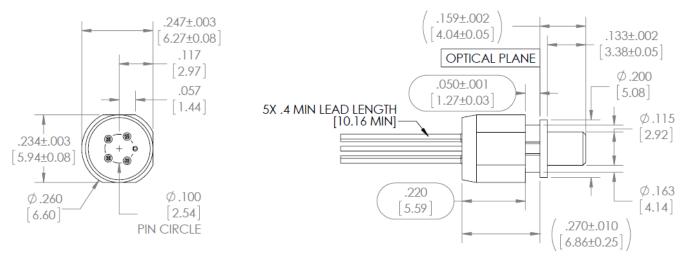
Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Data Rate		DR	0.15		4.25	Gbps	
Supply Voltage		V _{CC}	3.0	3.3	3.6	V	
Supply Current	$P_R = 0 \mu W$, $R_L = 50 \Omega$ AC coupled	I _{cc}		30	45	mA	(1)
Optical Return Loss	P _R =–12dBm	ORL	12			dB	(1)
Input Optical Wavelength	0°C to 70°C	λ_{P}	770	850	870	nm	
Maximum Average Input Power before Overload		P _{MAX}	0	+3		dBm	
Differential Output Voltage Swing	$P_{R,OMA} = -12Bm$, AC Coupled to R $_L$ =50 Ω	$V_{o(pk-pk)}$	100	150	220	mV	(1)(2)
Differential Transimpedance	I Transimpedance $ P_{R,OMA} = -12 dBm, $ AC Coupled to R $_{L}$ =50 Ω		1500	2500	3500	V/W	(1)(2)
-3dB Optical/Electrical Bandwidth	P _{R,OMA} =–12dBm	BW	2		4	GHz	(1)(2)(3)
Low Frequency –3dB Cutoff	P _{R,OMA} =–12dBm	BW _{LF}			10	KHz	(1)(2)(3)
Output Impedance		Z _{OUT}	42	50	58	Ω	
Output Return Loss	F<3GHz	S ₂₂	8	12		dB	
RMS Input Referred Noise Equivalent Power	3.2GHz, 4-pole BT Filter, P _R =0uW (Dark), BER 10 ⁻¹²	NEP			20	μW, OMA	(4)
Sensitivity, OMA	DR=1.0625, 1.25Gbps DR=2.125, 2.5Gbps DR=3.125Gbps DR=4.25Gbps	S		-20 -19 -18 -18	-17 -16 -16 -15.5	dBm	(5)
Stressed Sensitivity, OMA	DR=1.0625, 1.25Gbps DR=2.125, 2.5Gbps DR=3.125Gbps DR=4.25Gbps	S _{STRESSED}		-17 -16 -14 -14	-14 -13 -11 -10.5	dBm	(5)(6)
Rise/Fall Time	P _{R,OMA} =-12dBm, (20%-80%)	T_R/T_F		80	120	ps	(2)(7)
Pulse Width Distortion		PWD			5	%	
Power Supply Rejection Ratio	P _R =0µW (Dark), 5MHz <f<2ghz< td=""><td>PSRR</td><td>20</td><td></td><td></td><td>dB</td><td>(1)(8)</td></f<2ghz<>	PSRR	20			dB	(1)(8)
Monitor Current Slope	$P_R = -12dBm$	I _{MON}	0.45	0.5	0.55	A/W	(9)
Monitor Current Offset	P _R =0mW	I _{OFFSET}			10	nA	
PD Bias Voltage		PD _{BIAS}	Vcc -1	Vcc	Vcc +0.5	V	(13)
Group Delay	$P_{R,OMA} = -12dBm,AC$ Coupled to $R_L=50\Omega$ 2MHz <f< 2ghz<="" td=""><td>Delay</td><td>-50</td><td></td><td>50</td><td>ps</td><td>(10)</td></f<>	Delay	-50		50	ps	(10)
Deterministic Jitter	$P_{R,OMA} = -12dBm$, AC Coupled to R L=50 Ω	DJ _{TIA}		30	40	ps	(11)
Random Jitter	ter $P_{R,OMA} = -12dBm$, AC Coupled to R L=50 Ω			3	5	ps	(12)

Notes:

- 1. PR is the average optical power at the fiber face.
- 2. $P_{R,OMA}$ is the peak-to-peak optical power at the fiber face (optical Module Amplitude) $P_{R,OMA} \equiv \frac{2P_R(ER-1)}{ER+1}$ where ER is the extinction ratio (linear) of the optical source.
- 3. Bandwidth and Low Frequency Cutoff are measured with a small signal sinusoidal light source with –12dBm average power
- RMS input referred optical noise equivalent power is obtained by measuring the RMS output noise into a 1875 MHz, 4-pole Bessel— Thompson filter then dividing by the responsivity. A scaling factor of 14 is used to predict a BER of 10⁻¹².
- 5. Sensitivity is measured with an optical source with an extinction ratio of 3dB.
- Stressed receiver sensitivity is measured with 3.5dB vertical eye closure (intersymbol interference) and with 0.3UI of jitter added. The
 measurement technique is defined in IEEE 802.3ae.
- 7. Rise/Fall times are corrected for optical source Rise/Fall times. $T^2_{TIA} = T^2_{MEASURED} T^2_{OPTICAL}$
- 8. Value shown is with no external power supply filtering.
- 9. The monitor current slope is measured as the current into the PD_{BIAS} connection.



4.25Gbps SX ROSA


- 10. Group delay is a sensitive measurement to package interface, and includes the effects of PD, TIA, and package. Measurement is made with TO leads as short as possible.
- 11. DJ_{TIA} is specified as contributed DJ by the TIA, obtained from DJ²_{TIA} = DJ²_{TOTAL} DJ²_{OPTICAL}
- 12. RJ_{TIA} is specified as contributed DJ by the TIA, obtained from RJ²_{TIA} = RJ²_{TOTAL} RJ²_{OPTICAL}
- If external bias voltage is applied to V_{PD} while V_{CC} is externally unbiased, internal biasing of the TIA will occur, resulting in erroneous RSSI current.

Electrical Pinout

PIN	Description		
1	Vout+		
2	Vout-		
3	V_{PD}		
4	V _{CC}		
5	GND (Case)		

Mechanical Dimensions

Dimensions in inches [mm]
Contact COTSWORKS for mechanical dimensional information.

COTSWORKS and the COTSWORKS logo are registered trademarks of COTSWORKS, LLC. COTSWORKS reserves the right to change, alter, or revise this document without notice unless otherwise agreed to.

