Rugged pluggable Quad Channel Optical Transceiver

Features:

- Four optical channels
 - o DX: 2 Transmitters, 2 Receivers
 - o TX: 4 Transmitters
 - o RX: 4 Receivers
- Supports data rates up to 5 Gbps
- 850nm VCSEL transmitters and PIN receivers
- IEC-60825-1 Class 1 eye safety compliant
- Option for RoHS 6/6 compliant and lead free per Directive 2011/65/EU
- Typical reach of 500m on 50/125, 2000 MHz-km MMF
- Separable electrical interface for manufacturing and service convenience
- ARINC 801 fiber interface
- Enhanced status and diagnostics monitor interface
- -40°C to +85°C standard operating temperature, extended options available
- -55°C to +105°C storage temperature
- Parylene conformal coating option

The RCP-5G-SX is ideal for harsh environment connectivity because of its low cost, availability, and wide operating parameters

Absolute Maximum Ratings

<u> </u>							
Parameter	Symbol	Min.	Max.	Unit	Note		
Maximum Supply Voltage	Vcc	-0.3	4.0	V			
Electrostatic Discharge	ESD		500	V	Data I/O pins (1)		
Storage Temperature	T _{sto}	-55	105	°C			
Relative Humidity	RH	0	85	%	Non-condensing (2)		
Conformal Coating		8.0	1.2	mil	See ruggedization notes, pg.5		

Notes:

- 1) Proper ESD precautions should be observed while attaching RCP to the host board.
- 2) Based on conformal coating.

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Supply Voltage	V _{cc}	3.14	3.3	3.47	V	3.3V ±5%		
Supply Voltage Rise Time to 1.8V	t _{rvcc}			1	ms	Required if no ext. supervisor reset		
Data Rate	BR	1		5	Gbps	Balanced NRZ data protocols (1)		
Operating Temperature	T _{OP}	-40		85	°C	-40 to 100°C option available		

Contact COTSWORKS for information regarding lower data rates.

Electrical Specifications (ToP = -40°C to 100°C, Vcc = 3.14V to 3.47 V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Total Module Power Dissipation	P _{DISS(DX)}			1.52	W	Dual duplex configuration
Total Module Power Dissipation	P _{DISS(TX)}			1.39	W	Quad transmitter configuration
Total Module Power Dissipation	P _{DISS(RX)}			1.67	W	Quad receiver configuration
Transmitter						
Supply Current (Per Channel)	Icc	50		100	mA	
Input differential impedance	R _{in}	90	100	110	Ω	
Single-Ended Input Voltage Swing	$V_{IN(p-p)}$	50		600	mV_{pp}	
TX FAULT Asserted	V _{FH}	2.0			V	LVTTL output
TX FAULT De-asserted	V_{FL}			0.8	V	LVTTL output
TX Disable Input Voltage	V_{DIS}	2.0			V	LVTTL, internal 10kΩ pull-up
TX Enable Input Voltage	V _{EN}			0.8	V	LVTTL, internal 10kΩ pull-up
Receiver						
Supply Current (Per Channel)	Icc			120	mA	
Single-Ended Output Voltage Swing	$V_{OUT(p-p)}$	250		400	mV	
Data Output Rise Time	t _r		80	100	ps	(1)
Data Output Fall Time	t _f		80	100	ps	(1)
Contributed Total Jitter	$TJ_{RX(p-p)}$			0.45	UI	Input Power = -16 dBm
Contributed Deterministic Jitter	$DJ_{RX(p-p)}$			0.2	UI	Input Power = -16 dBm
Loss of Signal De-Assert Voltage	VLOSD			0.8	V	LVTTL output
Loss of Signal Assert Voltage	VLOSA	2.5		V_{CC}	V	LVTTL output
Serial Bus						
Data, Clock Input Low Voltage	VIL			0.8	V	
Data, Clock Input High Voltage	VIH	2.0		V_{CC}	V	
Data, Clock Output Low Voltage	VOL			0.4	V	
Data, Clock Output High Voltage	V _{OH}	2.4		V_{CC}	V	
Notes:			•		•	·

¹⁾ Measured with 9GHz minimum analog bandwidth 20% to 80%

Pin Configuration

GND_4	G4	G1	GND_4
GND_4	40	1	VCC_4
D4+	39	2	GND_4
D4-	38	3	GND_4
GND_4	37	4	CH4_DIS
FLT4/LOS4	36	5	N/C
GND_3	35	6	VCC_3
D3+	34	7	GND_3
D3-	33	8	GND_3
GND_3	32	9	CH3_DIS
FLT3/LOS3	31	10	SDA
FLT2/LOS2	30	11	SCL
GND_2	29	12	CH2_DIS
D2+	28	13	GND_2
D2-	27	14	GND_2
GND_2	26	15	VCC_2
FLT1/LOS1	25	16	CTRL_INT
GND_1	24	17	CH1_DIS
D1+	23	18	N/C
D1-	22	19	/RST
GND_1	21	20	VCC_1
GND_1	G3	G2	GND_1

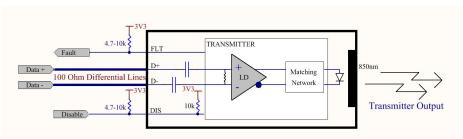
Host top view

Notes:

- Pin 19 is connected to the /RST pin of the microcontroller. See Application schematics for recommended connection.
- Channels 1 & 4 are TX circuits and Channels 2 & 3 are RX circuits in DX transceiver configuration.

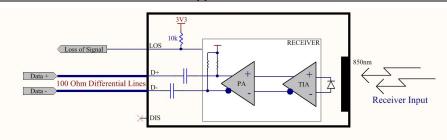
Pin	Symbol	Description	Logic/Protocol
1	VCC_4	Channel 4 VCC	+3.3V
2	GND_4	Channel 4 Signal Ground	0V
3	GND_4	Channel 4 Signal Ground	0V
4	CH4_DIS	Channel 4 Disable	LVTTL
5	N/C	Do Not Connect	No Connect
6	VCC_3	Channel 3 VCC	+3.3V
7	GND_3	Channel 3 Signal Ground	0V
8	GND_3	Channel 3 Signal Ground	0V
9	CH3_DIS	Channel 3 Disable	LVTTL
10	SDA	2-Wire Bus Data	I2C
11	SCL	2-Wire Bus Clock	I2C
12	CH2_DIS	Channel 2 Disable	LVTTL
13	GND_2	Channel 2 Signal Ground	0V
14	GND_2	Channel 2 Signal Ground	0V
15	VCC_2	Channel 2 VCC	+3.3V
16	CTRL_INT	Controller Interrupt	LVTTL
17	CH1_DIS	LVTTL	
18	N/C	No Connect	
19	/RST	Controller /RST	Note 1
20	VCC_1	Channel 1 VCC	+3.3V
21 GND_1 22 D1- 23 D1+ 24 GND_1 25 FLT1/LOS1 26 GND_2		Channel 1 Signal Ground	0V
		Channel 1 Data Negative	CML
		Channel 1 Data Positive	CML
		Channel 1 Signal Ground	0V
		Fault for Tx Channel 1 or Loss of Signal for Rx Channel 1	LVTTL
		Channel 2 Signal Ground	0V
27	D2-	Channel 2 Data Negative	CML
28	D2+	Channel 2 Data Positive	CML
29	GND_2	Channel 2 Signal Ground	0V
30	FLT2/LOS2 Fault for Tx Channel 2 or Loss of Signal for Rx Channel 2 FLT3/LOS3 Fault for Tx Channel 3 or Loss of Signal for Rx Channel 3		LVTTL
31			LVTTL
32	GND_3	Channel 3 Signal Ground	0V
33	D3-	Channel 3 Data Negative	CML
34	D3+	Channel 3 Data Positive	CML
35	GND_3	Channel 3 Signal Ground	0V
36	FLT4/LOS4	Fault for Tx Channel 4 or Loss of Signal for Rx Channel 4	LVTTL
37	GND_4	Channel 4 Signal Ground	0V
38	D4-	Channel 4 Data Negative	CML
39	D4+	Channel 4 Data Positive	CML
40	GND_4	Channel 4 Signal Ground	0V
G1-4	GND	Mounting Ground Pads for Connector	0V

Optical Characteristics (T_{OP} = -40°C to 100°C, V_{CC} = 3.14Vto 3.47 V)

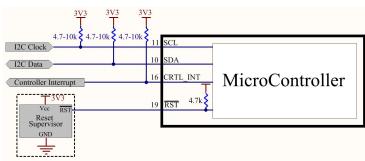

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Optical Output Power	Po	-5		-1	dBm	$(1)(2) T_{op} = -40^{\circ}C \text{ to } 85^{\circ}C$
Optical Output Power (>85°C)	Pox	-7		-1	dBm	$(1)(2) T_{op} = 85^{\circ}C \text{ to } 100^{\circ}C$
Optical Output Wavelength	λ_{c}	830	850	860	nm	(1)
RMS Spectral Width	λ_{RMS}		0.4	0.5	nm	(1)
Extinction Ratio	ER	9			dB	$T_{op} = -40^{\circ}C$ to $85^{\circ}C$
Extinction Ratio (>85°C)	ER _X	7			dB	$T_{op} = 85^{\circ}C \text{ to } 100^{\circ}C$
Optical Rise Time	t _r		30	50	ps	(3)
Optical Fall Time	t_f		70	95	ps	(3)
Relative Intensity Noise	RIN			-130	dB/Hz	
Contributed Total Jitter	$TJ_{TX(p-p)}$			0.3	UI	
Contributed Deterministic Jitter	$DJ_{TX(p-p)}$			0.2	UI	
Receiver						
Receiver Sensitivity: 5 Gbps	P _{IN 5}			-14	dBm	(4) BER=1E-12
Receiver Sensitivity: 4.25 Gbps	P _{IN_4}			-16	dBm	(4) BER=1E-12
Receiver Sensitivity: 2.13 Gbps	P _{IN 2}			-18	dBm	(4) BER=1E-12
Receiver Sensitivity: 1.25 Gbps	P _{IN 1}			-21	dBm	(4) BER=1E-12
Receiver Overload	P _{OL}	0			dBm	(4) Error Free
Optical Input Wavelength	λ_{P}	780	850	860	nm	
Optical Return Loss	ORL	12			dB	
Loss of Signal Assert	LOS _A	-24			dBm	Invalid optical input power threshold
Loss of Signal De-Assert	LOS _D			-19	dBm	Valid optical input power threshold
Loss of Signal Hysteresis	LOS _H	1		5	dB	(LOS _D - LOS _A)

Notes:

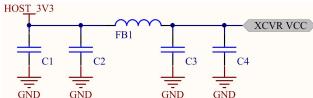
- 1) Measured at the end of a 2m to 5m, 50µm multi-mode patch cord.
- 2) IEC 60825-1 Class 1.
- 3) Measured with 9GHz minimum analog bandwidth, 20-80%.
- 4) Measured running PRBS 2⁷-1 using 9dB ER external reference transmitter over 50µm multi-mode fiber with a 50µm VOA.


Application Schematics

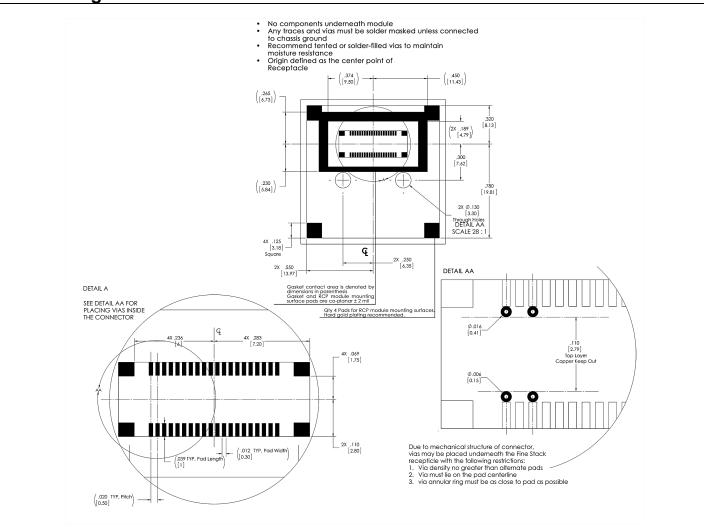
Transmitter Application Schematic


- Channels 1 & 4 are Transmitter Circuits in the standard DX version of the transceiver
 - Check Pinout on page 3 for pin assignments based on transceiver configuration

Receiver Application Schematic


- Channels 2 & 3 are Receiver Circuits in the standard DX version of the transceiver
 - Check Pinout on page 3 for pin assignments based on transceiver configuration

Controller Application Schematic

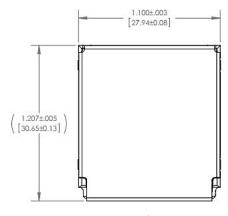

- Pin allocation and connections to the microcontroller are common to all variations of the RCP module.
- - Open collector reset supervisor circuit with a hold down time of 10ms or greater should be chosen
 - COTSWORKS validated with the MAX803 Reset Supervisor
- In the absence of the reset supervisor, the power to the transceiver module must reach 1.8V in 1ms or less for a valid POR on the microcontroller

Power Filtering Circuit Application Schematic

- All four channels must be powered for proper operation of the RCP module
- Recommend host routes separate supply voltages and filtering for each channel as shown above and implemented in the Host Board Application Schematic
 - FB1 ferrite bead for power supply noise suppresion; Murata BLM18KG601SN1, 0603, 600Ω @ 100MHz, 1300mA
 - C1/C4 bulk capacitance; Murata GRM21BR61C106KE15L, 0805, 10µF, 16V
 - 0 C2/C3 de-coupling capacitors; Murata GRM155R71C104KA88D, 0402, 0.1µF, 16V

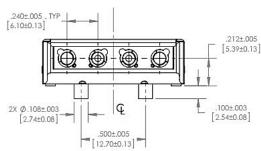
PCB Design Guidelines

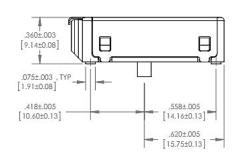
Notes:


- 1) Case Grounding
 - a. Chassis (case) ground is isolated from data ground.
 - b. The method of terminating chassis ground is application dependent.
 - i. The method chosen is usually based on EMI requirements of the end application.
 - The RCP is design to operate with chassis ground either floating or tied to data ground.
- 2) 40 Pin Connector Composition
 - a. Contact: Copper Alloy (t=0.15) with Gold Plating
 - b. Solder Peg: Copper Alloy with Tin Plating
 - c. Contact: Gold Plating (0.00076 mm)

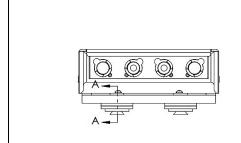
Ordering Information for 40 Pin Board-Mount Receptacle

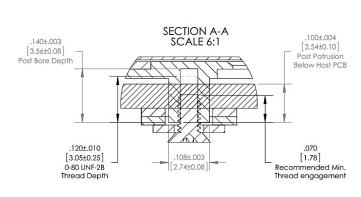
COTSWORKS Part Number


110-00047


Mechanical Specifications

Material Composition Notes


- Machined Housing is 7075 Aluminum with electroless nickel plating.
- · Cast Housing is Zamak 3 zinc alloy with electroless nickel plating.
- Fiber tray is 7075-T6 Al with no plating.
- Bottom gasket is 40A durometer of LS-2840 fluorosilicone rubber.
- EMI strip is a 45A conductive fluorosilicone rubber w/ silver plated Al filler.
- The ARINC 801 clips are stainless steel.
- Sheet metal cover is 302 Stainless Steel, ½ hardness.



Transceiver Variant	Optical Configuration	Mass (g) [Machined]	Mass (g) [Cast]	
RCP-5G-SX-DX	2 Transmitters, 2 Receivers	14.6	17.3	
RCP-5G-SX-TX	4 Transmitters	14.8	17.5	
RCP-5G-SX-RX	4 Receivers	14.1	16.8	

Mounting Hardware Guidelines

Mounting hardware shown for standard 0.0625" PCB thickness. Please contact COTSWORKS for other board thicknesses.

Recommended Torque	12 in-oz.
Recommended Minimum Thread Engagement	0.07 inches

COTSWORKS*

RCP-5G-SX

5G Transceiver

Rugged pluggable Quad Channel Optical Transceiver

Ruggedization Notes

- Parylene C coating can be used for conformal coating with a 1.0 mil ± 0.2 mil thickness through a deposition process.
 - Parylene Type C has a 5600 VPM rating, withstands high temperatures, and is extremely resistant to oil/dirt, and object impact.
- Contact COTSWORKS for all MSDS, case composition, and burn analysis.

Reference Information

- 1) IEEE Standard 802.3-2008
- 2) Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." June 8th, 2011

Regulatory Compliance

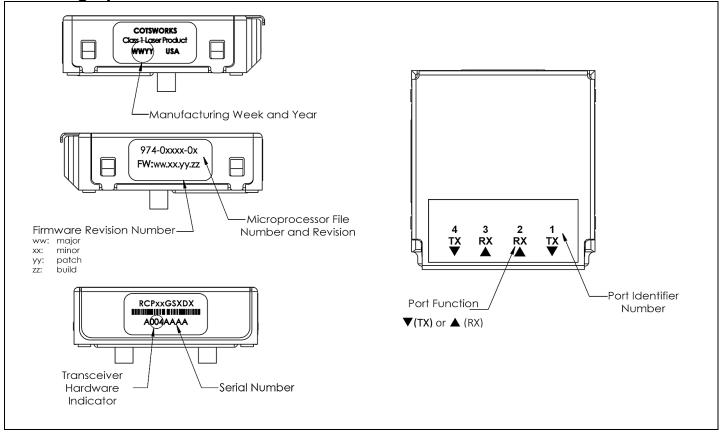
- COTSWORKS transceivers are Class 1 Laser Products and comply with US FDA regulations.
- These products are designed to comply with the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950.
- This part has an option for compliance with Directive 2011/65/EU covering restriction on certain hazardous substances (RoHS)
 Contact COTSWORKS support for a product compliance matrix

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

5G TransceiverRugged pluggable Quad Channel Optical Transceiver


Ordering Information

RCP-5G-SX-	xx	-LX-	х	-x-	xx-	-x	-x
RCP Form Factor	Channel Configuration	Fiber Interface	Ruggedized Coating	Operating Temp Range	Module Serial Bus Address (leave blank for	RoHS Level	Screw Thread Type
5Gbps Max Data Rate	DX: 2RX + 2TX	ARINC-801	(): Non-coated	· ·	default of C4)	(): Lvl 5	(): Imperial
Short Reach (MMF)	RX: 4RX TX: 4TX	Receptacles	R: Parylene	A: -40 to 85 °C M: -40 to 95 °C S: -40 to 100 °C	C0, C2, C6, C8, CA, CC, CE, D0, D2, D4, D6, D8, DA, DC or DE	6: <i>Lvl 6</i>	U: <i>Metric</i>

Example part number: RCP-5G-SX-RX-LX-R-A-C0-U

[5Gbps Rugged Chip-scale pluggable quad receiver, ARINC 801 Interfaces, Parylene-coated, industrial operating temp range, C0 Serial Bus Address, Metric Screw Threads]

Labeling Specifications

RCP, RCP+, COTSWORKS, and the COTSWORKS logo are trademarks of COTSWORKS, LLC. All rights reserved. Designed, manufactured, and created in the USA. Patent Pending.