Features:

- Four independent optical channels
 - o DX: 2 Transmitters, 2 Receivers
 - o TX: 4 Transmitters
 - o RX: 4 Receivers
- Supports data rates of 6 to 10.3125Gbps including
 - o IEEE 802.3ae 10GBASE-SR/SW and
 - o 10G Fibre Channel 1200-Mx-SN-I4
- 850nm VCSEL transmitters and PIN receivers
- IEC-60825-1 Class 1 eye safety compliant
- Option for RoHS 6/6 compliant and lead free per Directive 2011/65/EU
- Separable electrical interface with pluggable connector and screws
- ARINC 801 fiber interface
- Enhanced status and diagnostics monitor interface
- -40 to +85°C operating temperature
- -55 to +100°C storage temperature
- Parylene conformal coating option

The RCP-10G-SX is ideal for harsh environment connectivity because of its low cost, availability, and wide operating parameters

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note			
Maximum Supply Voltage	VCC	-0.3	4.0	V				
Electrostatic Discharge, Data I/O pins	ESD		500	V	(1)			
Storage Temperature	T _{STO}	-55	100	°C				
Relative Humidity	RH	0	95	%	Based on conformal coating			
Conformal Coating		0.8	1.2	mil	See ruggedization notes, page 8			
Notes:								
Proper ESD conditions should be employed while attaching RCP to the host board.								

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage	VCC	3.14	3.3	3.47	V	+/- 5%
Supply Voltage Rise Time to 1.8V	t _{rvcc}			1	ms	Required if no ext. supervisor reset
Data Rate	BR	6		10.3125	Gbps	Balanced NRZ data protocols
Operating Temperature	TOP	-40		85	°C	

Electrical Specifications (T_{OP} = -40 to 85°C, V_{CC} = 3.135 to 3.465 Volts)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Total Madula Dawar Dissination (DV)	P _{DISS(DX)}			1.53	W	DX: 0°C to +85°C
Total Module Power Dissipation (DX)	P _{DISS(DX_cold)}			2.57	W	DX: -40°C to 0°C (1)
Total Module Power Dissipation (TX)	P _{DISS(TX)}			1.39	W	TX: 0°C to +85°C
Total Module Fower Dissipation (TA)	P _{DISS(TX cold)}			3.47	W	TX: -40°C to 0°C (1)
Total Module Power Dissipation (RX)	P _{DISS(RX)}			1.66	W	
Transmitter						
Supply Current (Per TX Channel)	Icc			100	mA	0°C to +85°C
Supply Current (Fer 17 Charmer)	I _{CC(TX cold)}			250	mA	-40°C to 0°C (1)
Input differential impedance	R _{in}	90	100	110	Ω	
TX Single-Ended Input Voltage Swing	V _{in}	100		600	mV	
TX Fault Assert Output Voltage	V_{FH}	2.4			V	LVTTL
TX Fault De-Assert Output Voltage	V_{FL}			0.4	V	LVTTL
TX Disable Input Voltage	V_{DIS}	2.4			V	LVTTL
TX Enable Input Voltage	V _{EN}			0.4	V	LVTTL
Receiver						
Supply Current (Per RX Channel)	Icc			120	mA	
Rx Single-Ended Output Voltage Swing	Vo	250		400	mV	
Data Output Rise Time	t _r		35	45	ps	(2)
Data Output Fall Time	t _f		35	45	ps	(2)
Loss of Signal De-Assert	VLOSD	2.4			V	(3)
Loss of Signal Assert	VLOSA			0.4	V	(3)
Loss of Signal De-Assert Time	t _d	2.5	10	80	μs	
Loss of Signal Assert Time	t _a	2.5	10	80	μs	
Serial Bus						
Data, Clock Input Low Voltage	VIL	-0.5		0.8	V	
Data, Clock Input High Voltage	VIH	2.1		V_{CC}	V	
Data, Clock Output Low Voltage	Vol			0.4	V	

Notes:

- 1) Heater used for transmitter optical sub-assembly (TOSA), resulting in additional current draw.
- 2) 20% to 80%
- 3) LOS is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal is detected.

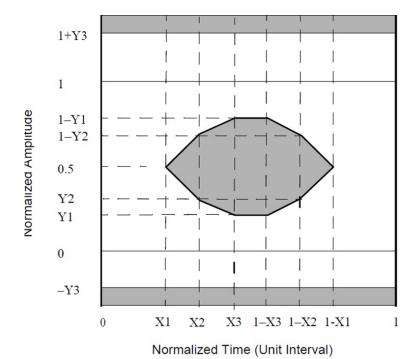
Pin Configuration

GND_4	G4	G1	GND_4
GND_4	40	1	VCC_4
D4+	39	2	GND_4
D4-	38	3	GND_4
GND_4	37	4	CH4_DIS
FLT4/LOS4	36	5	N/C
GND_3	35	6	VCC_3
D3+	34	7	GND_3
D3-	33	8	GND_3
GND_3	32	9	CH3_DIS
FLT3/LOS3	31	10	SDA
FLT2/LOS2	30	11	SCL
GND_2	29	12	CH2_DIS
D2+	28	13	GND_2
D2-	27	14	GND_2
GND_2	26	15	VCC_2
FLT1/LOS1	25	16	CTRL_INT
GND_1	24	17	CH1_DIS
D1+	23	18	N/C
D1-	22	19	/RST
GND_1	21	20	VCC_1
GND_1	G3	G2	GND_1

Host top view

Notes:

- Pin 19 is connected to the /RST pin of the microcontroller. See Application schematics for recommended connection.
- Channels 1 & 4 are TX circuits and Channels 2 & 3 are RX circuits in DX transceiver configuration.


	T		1
Pin	Symbol	Description	Logic/Protocol
1	VCC_4	Channel 4 VCC	+3.3V
2	GND_4	Channel 4 Signal Ground	0V
3	GND_4	Channel 4 Signal Ground	0V
4	CH4_DIS	Channel 4 Disable	LVTTL
5	N/C	Do Not Connect	No Connect
6	VCC_3	Channel 3 VCC	+3.3V
7	GND_3	Channel 3 Signal Ground	0V
8	GND_3	Channel 3 Signal Ground	0V
9	CH3_DIS	Channel 3 Disable	LVTTL
10	SDA	2-Wire Bus Data	I2C
11	SCL	2-Wire Bus Clock	I2C
12	CH2_DIS	Channel 2 Disable	LVTTL
13	GND_2	Channel 2 Signal Ground	0V
14	GND_2	Channel 2 Signal Ground	0V
15	VCC_2	Channel 2 VCC	+3.3V
16	CTRL_INT	Controller Interrupt	LVTTL
17	CH1_DIS	Channel 1 Disable	LVTTL
18	N/C	Do Not Connect, Internal Use Only	No Connect
19	/RST	Controller /RST	Note 1
20	VCC_1	Channel 1 VCC	+3.3V
21	GND_1	Channel 1 Signal Ground	0V
22	D1-	Channel 1 Data Negative	CML
23	D1+	Channel 1 Data Positive	CML
24	GND_1	Channel 1 Signal Ground	0V
25	FLT1/LOS1	Fault for Tx Channel 1 or Loss of Signal for Rx Channel 1	LVTTL
26	GND_2	Channel 2 Signal Ground	0V
27	D2-	Channel 2 Data Negative	CML
28	D2+	Channel 2 Data Positive	CML
29	GND_2	Channel 2 Signal Ground	0V
30	FLT2/LOS2	Fault for Tx Channel 2 or Loss of Signal for Rx Channel 2	LVTTL
31	FLT3/LOS3	Fault for Tx Channel 3 or Loss of Signal for Rx Channel 3	LVTTL
32	GND_3	Channel 3 Signal Ground	0V
33	D3-	Channel 3 Data Negative	CML
34	D3+	Channel 3 Data Positive	CML
35	GND_3	Channel 3 Signal Ground	0V
36	FLT4/LOS4	Fault for Tx Channel 4 or Loss of Signal for Rx Channel 4	LVTTL
37	GND_4	Channel 4 Signal Ground	0V
38	D4-	Channel 4 Data Negative	CML
39	D4+	Channel 4 Data Positive	CML
40	GND_4	Channel 4 Signal Ground	0V
G1-4	GND	Mounting Ground Pads for Connector	0V

Optical Characteristics (Top = -40 to 85°C, Vcc = 3.135 to 3.465 Volts)

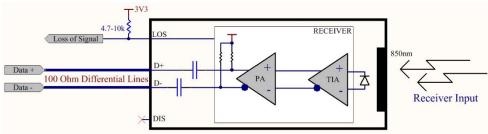
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Output Optical Power	P _{OUT}	-5	-1.5	-0.8	dBm	(1)
Optical Wavelength	λ		850		nm	
Extinction ratio	ER	3	5		dB	
Optical Rise/Fall Time	t _r /t _f			45	ps	(2)
Relative Intensity Noise	RIN			-130	dB/Hz	
TX Mask Compliance		See TX (Compliance	Mask	-	(3)
Receiver			•			
Receiver Sensitivity	RX _{SENS}			-12	dBm	(4)
Receiver Overload	RX_{MAX}	0			dBm	
Optical Center Wavelength	λС		850		nm	
Return Loss	RL	12			dB	
Loss of Signal Assert	LOS _A	-20			dBm	
Loss of Signal De-Assert	LOS _D			-9	dBm	
M. C.						·

Notes:

- 1) Class 1 Laser Safety per FDA/CDRH and IEC-60825-1 regulations.
- 2) Unfiltered, 20-80%.
- 3) Measured with 2-5 meter patch cord consisting of laser optimized OM3 or OM4 fiber.
- 4) Measured using PRBS 231-1 pattern.

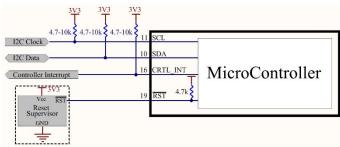
TX Compliance Mask

Coordinate	Value
X1	0.25
X2	0.40
X3	0.45
Y1	0.25
Y2	0.28
Y3	0.40

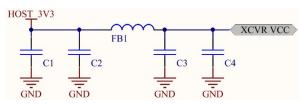

Rugged Pluggable Quad Channel Optical Transceiver

Application Schematics

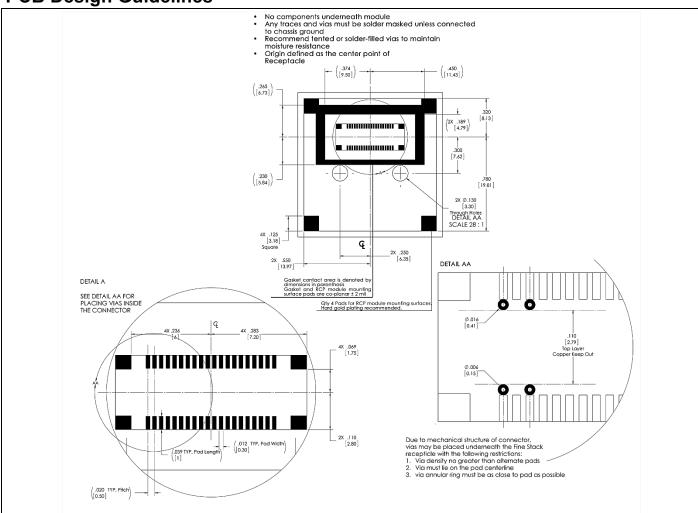
Transmitter Application Schematic 4.7-10k Fault Data + 100 Ohm Differential Lines D 100k Disable 4.7-10k Disable 100 Ohm Differential Lines D Transmitter Output


- Channels 1 & 4 are Transmitter Circuits in the standard DX version of the transceiver
 - o Check Pinout on page 3 for pin assignments based on transceiver configuration

Receiver Application Schematic


- Channels 2 & 3 are Receiver Circuits in the standard DX version of the transceiver
 - Check Pinout on page 3 for pin assignments based on transceiver configuration

Controller Application Schematic


- Pin allocation and connections to the microcontroller are common to all variations of the RCP module.
- Reset supervisor shown is optional
 - Open collector reset supervisor circuit with a hold down time of 10ms or greater should be chosen
 - COTSWORKS did testing with the MAX803 Reset Supervisor
- In the absence of the reset supervisor, the power to the transceiver module must reach 1.8V in 1ms or less for a valid POR on the microcontroller

Power Filtering Circuit Application Schematic

- All four channels must be powered for proper operation of the RCP module
- Recommend host routes separate supply voltages and filtering for each channel as shown above and implemented in the Host Board Application Schematic
 - FB1 ferrite bead for power supply noise suppresion; Murata BLM18KG601SN1, 0603, 600Ω @ 100MHz, 1300mA
 - C1/C4 bulk capacitance; Murata GRM21BR61C106KE15L, 0805, 10µF, 16V
 - C2/C3 de-coupling capacitors; Murata GRM155R71C104KA88D, 0402, 0.1μF, 16V

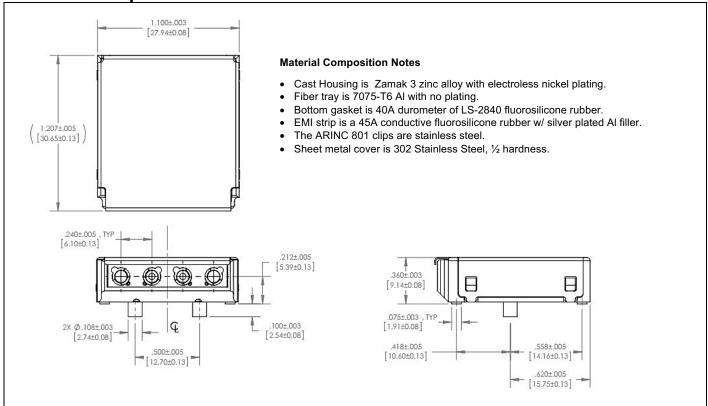
PCB Design Guidelines

Notes:

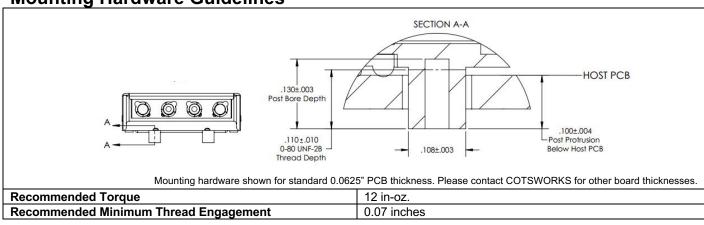
1) Case Grounding

- a. Chassis (case) ground is isolated from data ground.
- b. The method of terminating chassis ground is application dependent.
 - i. The method chosen is usually based on EMI requirements of the end application.
- c. The RCP is design to operate with chassis ground either floating or tied to data ground.

2) 40 Pin Connector Composition


- a. Contact: Copper Alloy (t=0.15) with Gold Plating
- b. Solder Peg: Copper Alloy with Tin Plating
- c. Contact: Gold Plating (0.00076 mm)

Ordering Information for 40 Pin Board-Mount Receptacle


COTSWORKS Part Number

110-00047

Mechanical Specifications

Mounting Hardware Guidelines

RCP-10G-SX

COTSWORKS*

10G TransceiverRugged Pluggable Quad Channel Optical Transceiver

Ruggedization Notes

- Parylene C coating can be used for conformal coating with a 1.0 mil ± 0.2 mil thickness through a deposition process.
- Parylene Type C has a 5600 VPM rating, withstands high temperatures, and extremely resistant to oil/dirt, and object impact.
- Contact COTSWORKS for all MSDS, case composition, and burn analysis.

Reference Information

- 1) IEEE Standard 802.3-2008
- 2) Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." June 8th, 2011

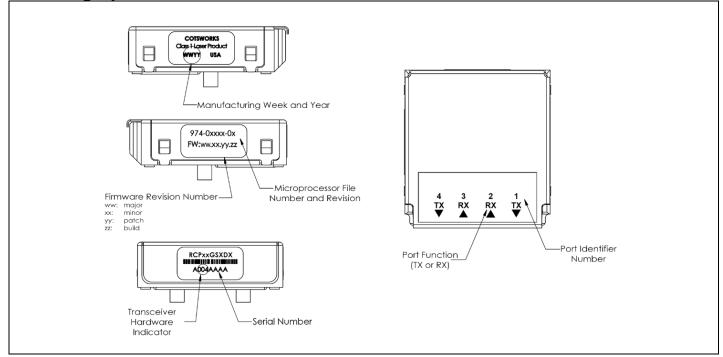
Regulatory Compliance

- COTSWORKS transceivers are Class 1 Laser Products and comply with US FDA regulations.
- These products are designed to comply with the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950.
- This part has an option for compliance with Directive 2011/65/EU covering restriction on certain hazardous substances (RoHS)
 - Contact COTSWORKS support for a product compliance matrix

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.


Ordering Information

RCP-10G-SX-	DX	-LX-	x	-x-	xx-	-x	-x
RCP Form Factor	Channel Configuration	Fiber Interface	Ruggedized Coating	Operating Temp Range	Module Serial Bus Address (leave blank for default of <i>C4</i>)	RoHS Level	Screw Thread Type
10Gbps Max Data Rate	DX: 2RX + 2TX RX: 4RX	ARINC-801 Receptacles	(): Non-coated R:	A:	C0, C2, C6, C8, CA,	(): <i>LvI 5</i> 6:	(): Imperial U:
Short Reach (MMF)	TX: <i>4TX</i>	7.000ptd0.00	Parylene	-40 to 85 °C	CC, CE, D0, D2, D4, D6, D8, DA, DC or DE	Lvl 6	Metric

Example part number: RCP-10G-SX-RX-LX-R-A-C0-U

[10Gbps 850nm-based Rugged Chip-scale Pluggable, Quad Receivers, ARINC 801 Interfaces, Parylene-coated, Industrial operating temp range, C0 Serial Bus Address, Metric Screw Threads]

Labeling Specifications

COTSWORKS and the COTSWORKS logo are registered trademarks of COTSWORKS, LLC. COTSWORKS reserves the right to change, alter, or revise this document without notice unless otherwise agreed to.